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Null output is obtained for three values of -y by adjusting A

and +. Using these data, (7), (13), and (16) are solved to

obtain Cl — G. The rotating transition is returned to

ports 5 and 6, and ports 3 and 4 are short circuited so that

P84’= P43’= O. Again, A and @are adjusted for null output at
three values of?. Using these data and values of Cl– G pre-

viously determined, (7) and (11) through (15) are combined

to yield Cl– C& The apparatus is now calibrated.

To measure Kerr effect, a sample is placed at ports 3 and

4, and the off-diagonal terms in (11) become

psb’=a–fi

}
(17)

p43’=lx+p “

With the rotating transition set at some arbitrary angle y,

A and @ are adjusted for null output with and without the

applied magnetic field B. Inserting those values of A and @

into (7) and (13) yields two values of R2. The single value Rs

is found from Y with (15). Equation (14) evaluated with and

without the magnetic field thus becomes

and

R3 =

R3 =

R,(O) + a

d?,(o)+ 1

R,(B) + {a– /3}
{a+DIR,(B) + 1 “

(18)

(19)

The magnetic Kerr effect follows by solving (18) and (19)

simultaneously for 8. Although calculation of the preceding

equations is straightforward, it is fairly time consuming. For

this reason, we have programmed a digital computer to
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determine P directly from the calibration and measurement

data obtained from the apparatus.
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On the Theory of Shielded Surface Waves

JAMES R. WAIT, FELLOW, IEEE

Abstract—An analysis is given for the modes which wilf be excited

between two parallel impedance boundaries. It is shown that, for inductive-

type surfaces, two of these modes have a surface wave character even

though the strnctare is bonnded in the transverse dimension. The inter-

action between these surface waves and the accompanying waveguide

modes is discussed for this model which is admittedly highly idealized.
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INTRODUCTION

I
N A RECENT interesting paper, Barlow [1] has con-

sidered the possibility that a surface wave may be

shielded in such a manner that its transverse field pat-

tern is limited. He proposed the application of the concept to

communication circuits for high-speed trains. The main

advantage would be its insensitivity to outside interference.

In order to provide further insight into the nature of

shielded surface waves, a rather simple model is chosen here.
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Consideration is given the TM modes which will propagate

in the x direction in air between two parallel supporting sur-

faces (of infinite extent) in the xz plane. The relevant field

components are H., E., and Ev which vary as exp [iut].

THE MODE SUM

The tangential field components are assumed to be related

by surface impedances Z, and Z& Thus,

EJHU = + Z, aty=O

and

E,/H. = – zd at~=d. (1)

Because we are dealing with a bounded structure, it is as-

sumed the fields can be written as a discrete sum of modes.

Thus, suppose that [2]

H, = ~ an.f~(y) exp [–ik~x] (2)
n

where an is a coefficient, ~Jy) is the transverse variation of

the modes, and L is the longitudinal wavenumber. Within

the region O<y <d, H, satisfies

(i32/dx2 + d2/dy2 + lc2)Hz = O (3)

where k is the wavenumber in air. From Maxwell’s equa-

tions, E.= (im-ldHJ~y and EU= – (iw-ldHJr?x, where c

is the dielectric constant of free space.

An application of the boundary conditions shows that A.. .
is to be determined from

G%)(:: iE)ex’’-2uJ’ “

where w = (h,,Z—~ l/z. Here,)

exp [+u.Y] + RO exp [— un!/]

fn(?J) =
2RoI/~

is chosen where

u,, — icuzoRO=
u. + ‘iEuzo

(4)

(5)

In a straightforward manner, it may readily be shown that

d

NL7Z,7L!=
s

fn(u)fm (Y)@/ = o for n # n’ (6)
do

while

iadzo/d i6f.oZd/d
~Nn,n = 1 – (7)

u? + (WZJ2 — 7L~+ (adzd)2

The orthogonality property exhibited by (6) assures that only

a discrete spectrum is needed for this problem, as indicated

At the aperture plane x= O, assume

distribution g(y) is known. Thus,

-!7. ].=O = Eoq(y)

411

that the electric field

(8)

where EO is a constant with dimensions volts per meter. By

utilizing (6) and (7), it is readily found that

E, em d

san = ~ N.,& ,
g(y)fn(y)dy. (9)

Inserting this into (2), we then obtain the formal exact solu-

tion of the problem. This formal development constitutes a

modest extension of the well-known analysis for excitation

of modes in a parallel-plate region with perfectly conducting

walls [3], [4]. It is surprising that the explicit form, valid for

surface impedance boundaries, is apparently not available in

standard microwave engineering textbooks, although equiva-

lent results are found in the radio propagation literature

[2], [5].

THE “SURFACE WAVE” MODES

To facilitate the discussion, assume that both boundaries
are purely inductive, Thus, Zo = i(k/w)p and zd = i(k/cu)q,

where p and q are dimensionless real quantities. The modal

condition (4) is thus written in the forml

(:i:)(:i;)=ex’’-2dldl“0)
If the real part of ad is sufficiently large, the solutions are of

the form u~kp and u~kq. The corresponding values of the

horizontal wavenumber are

x = /+(1+ p~)ll~ and k(l + g2)1iz.

These are “slow” surface waves as the phase velocities are

(1 +p2)-1/2 and (1 +q2)1/2 relative to the plane wave velocity in

the air. The transverse variation of these modes is described by

f(Y)
— ~ exp [–kpy]
f (o)

and

f(y)
—~exp [–kq(d – y)],
j(o)

(ha)

(llb)

which indicate that the waves “cling” to the boundary sur-

faces. Within this approximation, the “surface waves” are

noninteracting and their properties are identical to the

trapped waves which may propagate on single flat surfaces.

I When referrin~ to the surface wave modes, the subscript ?Zis
by (2). dropped.
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When the interaction is not strong, it is desirable to con-

sider another form of (10). This is written

(u – kp) = a(u) (12)

where 6(u) = (u+kp)(u— kq)–l(u+kq) exp [— 2ud], and

where ~(u) is to be regarded as a perturbation. Thus, pro-

vided p is not near q, proceed to obtain a first-order per-

turbation by replacing u on the right-hand side of (12) by

kp, the zero-order solution. The corrected solution for one

of the surface waves is then given by

u z% I@ + a(kp) (13)

where

a(kp)G2kp~exp [-2kpd]. (14)
P–!l

The interaction effect is exemplified by the finiteness of 6

which vanishes if kpd is sufficiently large, provided p #q.

In a similar manner, the first-order corrected solution for

the other surface wave is given by

U g kq + a(kq) (15)

where

q+p
d(kq) g 2kq — exp [– 2k@].

!l-P
(16)

In the special case p= q, the solutions are obtained by

writing (10) in the form

(U – kp) = f A(u) (17)

where

A(u) = (u + kp) exp [–ud].

The corresponding first-order perturbation solutions are

U !% kp + A(kp) (18)

where

A(kp) !% 2kp exp [–kpd].

It is interesting to note that the solution given by (18) is

double valued even though the two boundaries are identical.

A closer inspection of the matter indicates that these give

rise to even- and odd-type field patterns about the center

line of the guide.

A case of some interest is when p #q, but p–q is small. To

handle this situation, we define a small parameter x by the

relation

kq=kp +x.

Equation (10) then takes the form

(u – kp)2 – Z(U – kp) – 6.2(IL) = O (19)

where

&’(u) = [(u + kp)z + x(tL + k~)l ex~ [–2zLd1.

The first-order perturbation solution of (19) yields

[x(3’1’2’20)(u–kp)~;f r32+

where

&2 ~ 4(kp)2 exp [–2kpd].

As x tends to zero, this is seen to reduce to (18).

Once the value of u appropriate for a given situation has

been obtained, the longitudinal wavenumber h is obtained

from the relationship X= (u2+k2)1/2. These are part of the

discrete sum indicated by (2). It appears that the interaction

does no more than modify the magnitude of u and x so

that, for a Iossless structure, these parameters remain real

and positive.

THE WAVEGUIDE MODES

In addition to the surface wave contributions, an infinite

number of waveguide modes may exist. For the lossless

structure, they are characterized by solutions x which are

either purely real or purely imaginary. The latter correspond

to the waveguide modes beyond cutoff and the modes are

evanescent in the positive x direction.

To solve for the waveguide modes, it is convenient to

introduce the dimensionless parameters C and S’ which are

defined by

u = ikC and A = ks.

The mode equation (10) may thus be written

(%$x%)exp [– 2ikCd] = exp [– 2m”m] (21)

where now m is considered to be zero or a positive integer.

When both p and q<< I Cl, itfollows that (21) is approxi-

mated by

kdC = ~m – (p + q)c-’. (22)

This may be solved as a quadratic to yield

2cm=(i3*[(a-4(pJq)l’2 ’23)
The positive sign before the radical is taken, as Cm must

reduce to (trm/kd) for the case where p = q = O. Thus,

‘m=wa’+
[( AWp + ~) I/Z 2 1/2

.1+ l–
(~m)2 )1} (24)

It is interesting to note that when m= O, (24) gives

SO= [1 +(p+q)/kd]112 which, however, is only valid if

p+q<<kd. Actually, this zero-order waveguide mode splits
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into the two surface wave modes when (p+q)kb> 1 as It is interesting to note that if p<<q,
indicated in the previous section. Therefore, in what fol-

lows and in order to avoid confusion, assume that only 2Nm,m = 1 +
sin 2kdC~

(30)
the positive-order waveguide modes need be discussed. For 2kdC~

m=l,2,3, . . . the radical in (24) is expanded, which is

valid when (p+q~kd<<l. Then, where use has been made of the resonant condition given by

(21). If both p and q<<l, it follows from either (29) or (30)

‘m=[’ -(=)+ 2(PJ ‘)1”2 that N~,~s~ for m= 1, 2, 3, . . .

“[()irm 2 2(p + q) 112
=.? —— –l–

kd 1kd “
(25)

The latter form is to be used when the modes are “cut off,”

(i.e., rm/kd> 1).

A convenient but approximate form of (26) is obtained by

expanding the radical and retaining only the first two terms.

Combining this with a similar result derived from (25), we

find that

‘+(=x]”
+(PF)[’-(311”‘2’)

where m=l, 2, 3, . . . . It is evident that this result is only

valid if

“+’)< <k’[] -(=)1’

which restricts its usefulness to surface reactance small com-

pared with 120m ohms. This limiting case is not of immediate

concern and it would not be applicable under conditions

where noninteracting surface waves are supported by the

structure.

The function~Jy), characterizing the transverse field vari-

ation of the waveguide modes, is really identical to (5) but,

in’ the present notation, it reads

f.(v) =
exp [+iL&mu] + RO exp [–iiwxvl

~Rol/2 (27)

where

c. – ip
R, =

Cm+ip”

For p<<C~, it is seen that

fm(!l’) = ~~s (~cm!f)

(28)

POWER CONSIDERATIONS

The power flow P., in the guide for a given mode, is calcu-

lated from

s

d

P. = Re EUHz*dy watts per unit width. (31)
o

Carrying out the integrations, we readily obtain the result

that

where n= k/cu and where an is given by (9). If the aperture is

a slit excited by a voltage VO, it is seen that

a. = (vO/d) (aJJ/MNn,n-l.f.(U) (33)

where y, is the y coordinate of the slit. Then, if we are deal-

ing with the Iossless structure employed above, it follows

that

Pm = V17
.fm2(Y.)

watts per unit width (34)
qdSmNm,m

for the waveguide modes of order m.

We are now able to say that the ratio of the power P in a

surface wave mode to the power Pm in a waveguide mode is

very approximately given by

_!AQ-P

Pm — f7n2(YJ
(35)

for a fixed value of VOand d. This rough equality is a conse-

quence of the fact that the factors kSm and N.,,, are not

critically dependent on the modal characteristics. Because

the transverse variation function ~(y,) for surface waves is

exponentially attenuated from the boundaries, it follows

that, for a slit source, we should take y, = O, if the ratio given

by (35) is to be maximized. Thus, considering a guiding

structure consisting of two parallel plane surfaces of surface

reactance 1207rp ohms, it follows from (5), (18), and (35) that

which demonstrates the sinusoidal character of the trans-

verse variation for the waveguide modes. ~ = exp [+kpd] (36)

The normalization function N~,~ for the waveguide modes
m

is also formally given by (7) but a more convenient form is is valid if p<< 1. Not surprisingly, this result indicates that a

1 1
major portion of the power is being supplied mostly to the

2Nm,. = 1 – ~ ——
9

. (29) surface wave if kd is sufficiently large that kpd is greater
kd Crnz+ p2 – kd Cm2+ q~ than 3 or 4.
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LossY STRUCTURES

Up to this point, the discussion has been related to a loss-

less structure. The formal theory is, of course, valid for com-

plex surface impedances 2, and Z~ but then the excited

modes will be attenuated. In the present context, the interest-

ing case is when the resistive parts of the surface impedances

are small compared with the inductive parts. To this end, set

ZO = ivp(l – i&J and Z. = inq(l – itb)

where v=k/coJG4120~ and p, q, tio, and & are all real but

&<<l and ~~<1.

These various formulas, developed above for the propaga-

tion constants of the surface waves and the waveguide

modes, are still valid if p and q are replaced everywhere by

p(l – i~o) and q(l – &). Thus, the horizontal wavenumber

for the surface wave, in the case of negligible interaction, is

given by

x == k[l + p’(1 – ;6.)’]’/’

S%k(l + pt)llt – ikp%(l + p2)–1/2. (37)

Therefore, the attenuation rate is kp%o(l +pt)–~/a nepers per

unit length.

For the waveguide modes, it is a simple matter to show

from (27) that the attenuation rate is approximately

(1/d)(p&+q&)[l –(mn/kd)a]-IIt for a mode of order m. This

result, of course, is only valid if p and g are also small, and

it is required that the modes are not near cutoff.

The ratio R of the attenuation rate of a surface wave

mode and a waveguide mode is an interesting parameter.

Using the immediately foregoing results, it follows that

‘=P3LJ1-(3T2’38)
which indicates that a lossy upper boundary (i.e., &> O) will

attenuate the waveguide modes but will have a negligible

effect on the attenuation of the surface wave on the lower

boundary.

Equation (38) above is valid only if both p and q are small.

The other interesting case is to take p and q to be sufficiently

large that, for the waveguide modes, I C~l <<p and q. Under

this condition, (21) may be approximated by

[ 1C. ikd++++-+~+~ =irrn (39)
%pbqpq

which gives an explicit formula for calculating G. The

corresponding attenuation rate for a waveguide mode

of order m is readily found to be given approximately by

k(rnz/kd)2(8Jp+ &/q). For this case, the ratio of the surface

wave to the waveguide mode attenuation rate is found to be

where m=l, 2, 3, . . . .

This ratio R can be made small by choosing the upper

boundary to be relatively Iossy (i.e., &>>60). However, one

should be cautious in drawing too many conclusions from

(40) because of the approximations used. For exampIe, it is

required that kpd> 2 or 3 in order to neglect the surface

wave interaction with the upper boundary and the corre-

sponding waveguide modes must be sufficiently near graz-

ing that both p and q>>(~m/kd).

CONCLUSION

It is believed that some of the results given here have a

bearing on the operation of devices which require that a sur-

face wave be contained in an enclosed conductor. While the

idea of shielding the surface from the external environment

is interesting, considerable care should be taken to avoid the

contaminating influences of the waveguide modes which will

accompany the desired surface wave modes. In spite of this

fundamental drawback, the subject warrants further atten-

tion.
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