410

Null output is obtained for three values of v by adjusting A4
and ¢. Using these data, (7), (13), and (16) arc solved to
obtain C;—C;. The rotating transition is returned to
ports 5 and 6, and ports 3 and 4 are short circuited so that
pad =ps’ =0. Again, A and ¢ are adjusted for null output at
three values of v. Using these data and values of Cy—C; pre-
viously determined, (7) and (11) through (15) are combined
to yield C,— Cs. The apparatus is now calibrated.

To measure Kerr effect, a sample is placed at ports 3 and
4, and the off-diagonal terms in (11) become

p34' =a B}

P43’ =a++f .
With the rotating transition set at some arbitrary angle v,
A and ¢ are adjusted for null output with and without the
applied magnetic field B. Inserting those values of 4 and ¢
into (7) and (13) yields two values of R,. The single value R;

is found from v with (15). Equation (14) evaluated with and
without the magnetic field thus becomes

(17)

s = R2(0) + 24 (18)
aR,(0) + 1
and
_ Ry(B) + {a — 8} 19

{a+ BlRu(B) + 1

The magnetic Kerr effect follows by solving (18) and (19)
simultaneously for 8. Although calculation of the preceding
equations is straightforward, it is fairly time consuming. For
this reason, we have programmed a digital computer to
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determine g directly from the calibration and measurement
data obtained from the apparatus.
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On the Theory of Shielded Surface Waves
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Absiract—An analysis is given for the modes which will be excited
between two parallel impedance boundaries. It is shown that, for inductive-
type surfaces, two of these modes have a surface wave character even
though the structure is bounded in the transverse dimension. The inter-
action between these surface waves and the accompanying waveguide
modes is discussed for this model which is admittedly highly idealized.
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INTRODUCTION

sidered the possibility that a surface wave may be
shielded in such a manner that its transverse field pat-
tern is limited. He proposed the application of the concept to
communication circuits for high-speed trains. The main
advantage would be its insensitivity to outside interference.
In order to provide further insight into the nature of
shielded surface waves, a rather simple model is chosen here.

I[N A RECENT interesting paper, Barlow [1] has con-
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Consideration is given the TM modes which will propagate
in the x direction in air between two parallel supporting sur-
faces (of infinite extent) in the xz plane. The relevant field
components are H,, E,, and E, which vary as exp [iwt].

THE MODE SuM
The tangential field components are assumed to be related
by surface impedances Z, and Z,. Thus,

E.,/H, = + Z, aty =0

and

E.,/H,=— 7, aty = d. (1)
Because we are dealing with a bounded structure, it is as-
sumed the fields can be written as a discrete sum of modes.

Thus, suppose that [2]
H. = 2 a.fu(y) exp [—inaz] (2)

n
where a, is a coefficient, f,(y) is the transverse variation of

the modes, and A, is the longitudinal wavenumber. Within
the region 0<y<d, H, satisfies

(0%/9x% 4 32/dy* + k)H, = 0 3)

where k is the wavenumber in air. From Maxwell’s equa-
tions, E,=(jew)0H,/dy and E,= —(iew)'9H./dx, where e
is the dielectric constant of free space.

An application of the boundary conditions shows that A,
is to be determined from

n — tewZ n — tewZ
<u ‘ew 0) <u _éw d> exp [—2u.d] =1 (4)
Un + TewZo/ \Un + TewZa

where u,=(\.2—k?)2. Here,

exp [+uny] + Roexp [—uay]
2R

L) = (5)

is chosen where
Uy — 1€l

Re = -
Un + TewZ g

In a straightforward manner, it may readily be shown that

1 d
Nuw =5 f Fofwdy =0 forn=a’  (6)
0

while

N =1 — tewZy/d B tewlq/d . o
u? + (ewZg)®*  u® + (ewZa)?

The orthogonality property exhibited by (6) assures that only
a discrete spectrum is needed for this problem, as indicated
by (2.
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At the aperture plane x=0, assume that the electric field
distribution g(y) is known. Thus,

Byl = Bogy) (8)

where E, is a constant with dimensions volts per meter, By
utilizing (6) and (7), it is readily found that
Ey  ew

tn = —
d Naunhe

d
[ swrnwa. ©)

Inserting this into (2), we then obtain the formal exact solu-
tion of the problem. This formal development constitutes a
modest extension of the well-known analysis for excitation
of modes in a parallel-plate region with perfectly conducting
walls [3], [4]. It is surprising that the explicit form, valid for
surface impedance boundaries, is apparently not available in
standard microwave engineering textbooks, although equiva-
lent results are found in the radio propagation literature

[2]. [5].

THE “SURFACE WAVE” MODES

To facilitate the discussion, assume that both boundaries
are purely inductive. Thus, Z,=i(k/ew)p and Z;=i(k/ew)q,
where p and g are dimensionless real quantities. The modal
condition (4) is thus written in the form!

—k —k
<u p><u q) = exp |—2ud].
U+ kp u + kg

If the real part of ud is sufficiently large, the solutions are of
the form u=kp and u=2kq. The corresponding values of the
horizontal wavenumber are

(10)

AN=EkQ+pH? and k(1 + OV

These are ““slow” surface waves as the phase velocities are
(1+p»~12 and (1442 relative to the plane wave velocity in
the air. The transverse variation of these modes is described by

;’% =~ exp [—kpy] (11a)
and
W ~exp [—kq(d — )], (11b)

J©)

which indicate that the waves “cling” to the boundary sur-
faces. Within this approximation, the “surface waves” are
noninteracting and their properties arc identical to the
trapped waves which may propagate on single flat surfaces.

1 When referring to the surface wave modes, the subscript » is
dropped.
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When the interaction is not strong, it is desirable to con-
sider another form of (10). This is written

(u — kp) = o) (12)

where §(u)=(ut+kp)u—kgy (utkq) exp [—2ud], and
where d(x) is to be regarded as a perturbation. Thus, pro-
vided p is not near ¢, proceed to obtain a first-order per-
turbation by replacing u on the right-hand side of (12) by
kp, the zero-order solution. The corrected solution for one

of the surface waves is then given by
u = kp + 6(kp) (13)

where

+
5(kp) 2= 2ep 2L exp [—2hepd].
p—q

(14)

The interaction effect is exemplified by the finiteness of &
which vanishes if kpd is sufficiently large, provided p=q.
In a similar manner, the first-order corrected solution for

the other surface wave is given by
u = kg + 8(kq) (15)

where

+
8(kq) =2 2kq 7P exp [—2kqd].

(16)

In the special case p=gq, the solutions are obtained by
writing (10) in the form

(w—kp) = £ A(w) a7
where
A(w) = (u + kp) exp [—ud)].
The corresponding first-order perturbation solutions are
ukp + Alkp) (18)
where
Alkep) = 2kp exp [—kpd].

It is interesting to note that the solution given by (I18) is
double valued even though the two boundaries are identical.
A closer inspection of the matter indicates that these give
rise to even- and odd-type field patterns about the center
line of the guide.

A case of some interest is when p>=g, but p—q is small. To

handle this situation, we define a small parameter x by the
relation

kg =kp + x.
Equation (10) then takes the form
(u — kp)? — z(u — kp) — 8,2(w) =0 19)
where

8.2(w) = [(w + kp)? + 2(u + kp)] exp [~2ud].
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The first-order perturbation solution of (19) yields
x T 271/2
—kp) = — 45,2 —
w-w=gae s (5)]

6. = 4(kp)? exp [—2kpd].

(20)

where

As x tends to zero, this is seen to reduce to (18).

Once the value of u appropriate for a given situation has
been obtained, the longitudinal wavenumber X is obtained
from the relationship A=(u24k?)"2. These are part of the
discrete sum indicated by (2). It appears that the interaction
does no more than modify the magnitude of » and X so
that, for a lossless structure, these parameters remain real
and positive.

THE WAVEGUIDE MODES

In addition to the surface wave contributions, an infinite
number of waveguide modes may exist. For the lossless
structure, they are characterized by solutions A which are
either purely real or purely imaginary. The latter correspond
to the waveguide modes beyond cutoff and the modes are
evanescent in the positive x direction.

To solve for the waveguide modes, it is convenient to
introduce the dimensionless parameters C and S which are
defined by

4 =1kC and N = EkS.

The mode equation (10) may thus be written

C—p\/C —1q .
—2kCd| = —2 21

where now m is considered to be zero or a positive integer.
When both p and ¢<|C|, it follows that (21) is approxi-

mated by
kdC = am — (p + ¢)C~. (22)
This may be solved as a quadratic to yield
m m\? 4(p + 12
20, = (—) + [<L> _to Q)] . @)
kd kd kd

The positive sign before the radical is taken, as C,, must
reduce to (zm/kd) for the case where p=¢=0. Thus,

Rk
LT

It is interesting to note that when m=0, (24) gives

So=[14+(p+q)/kd]¥2 which, however, is only valid if
p+q<&kd. Actually, this zero-order waveguide mode splits

(24)
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into the two surface wave modes when (p+¢)kd>>1 as
indicated in the previous section. Therefore, in what fol-
lows and in order to avoid confusion, assume that only
the positive-order waveguide modes need be discussed. For
m=1, 2, 3, - - -, the radical in (24) is expanded, which is
valid when (p4q)kd<<1. Then,

2 2 1/2
o1 - (S2) #2020
kd kd

The latter form is to be used when the modes are ““cut off,”
(i.e., wm/kd>1).

A convenient but approximate form of (26) is obtained by
expanding the radical and retaining only the first two terms.
Combining this with a similar result derived from (25), we
find that

™ 2=71/2
Sm g[l - < > :|
kd

-G T

where m=1, 2, 3, - - - . It is evident that this result is only

valid if
2=1—1
b+ kd[] - <ﬂ) ]
kd

which restricts its usefulness to surface reactances small com-
pared with 120 ohms. This limiting case is not of immediate
concern and it would not be applicable under conditions
where noninteracting surface waves are supported by the
structure.

The function f,.(y), characterizing the transverse field vari-
ation of the waveguide modes, is really identical to (5) but,
in"the present notation, it reads

exp [+ikCry] + Roexp [—ikCoy]

(26)

fm(y) = 2R01/2 (27)
where
Cn—1p
R, = . 28
P Cutip )

For p<C,, it is seen that
Fm(y) 2 cos (kCry)

which demonstrates the sinusoidal character of the trans-
verse variation for the waveguide modes.

The normalization function N,, ., for the waveguide modes
is also formally given by (7) but a more convenient form is

(29)

kd Co? + p* kd Cu® + ¢*
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It is interesting to note that if p<<g,

sin 2kdC,.

30
2kdCr, (30

2Nam =1+

where use has been made of the resonant condition given by
(21). If both p and ¢«1, it follows from either (29) or (30)
that Ny, =% form=1,2,3, - - -.

PowER CONSIDERATIONS

The power flow P,, in the guide for a given mode, is calcu-
lated from

d
P, = Re f E, H *dy watts per unit width.  (31)
0

Carrying out the integrations, we readily obtain the result
that

P, = Rend| a,|28.N,,., (32)
where n=/k/ew and where a, is given by (9). If the aperture is
a slit excited by a voltage V, it is seen that

an = (Vo/d)(ew/N)N oo™ fn(ys) (33)

where y, is the y coordinate of the slit. Then, if we are deal-
ing with the lossless structure employed above, it follows
that

Tn*(Ys)

P, =Ve2
ﬂdSmNm,m

watts per unit width (34)

for the waveguide modes of order m.

We are now able to say that the ratio of the power Pin a
surface wave mode to the power P, in a waveguide mode is
very approximately given by

P ~ f 2(?/8)
T IRy

for a fixed value of ¥, and d. This rough equality is a conse-
quence of the fact that the factors kS, and N, are not
critically dependent on the modal characteristics. Because
the transverse variation function f(y,) for surface waves is
exponentially attenuated from the boundaries, it follows
that, for a slit source, we should take y,=0, if the ratio given
by (35) is to be maximized. Thus, considering a guiding
structure consisting of two parallel plane surfaces of surface
reactance 120xp ohms, it follows from (5), (18), and (35) that

(35)

P,

P
S oxD [+kpd] (36)

is valid if p<<1. Not surprisingly, this result indicates that a
major portion of the power is being supplied mostly to the
surface wave if kd is sufficiently large that kpd is greater
than 3 or 4.
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Lossy STRUCTURES

Up to this point, the discussion has been related to a loss-
less structure. The formal theory is, of course, valid for com-
plex surface impedances Z, and Z; but then the excited
modes will be attenuated. In the present context, the interest-
ing case is when the resistive parts of the surface impedances
are small compared with the inductive parts. To this end, set

Zo = igp(l — 18y) and Zz = ipq{l — 48,)

where n=k/ew=120r and p, q, 8, and §; are all real but
§c<1 and sk 1.

These various formulas, developed above for the propaga-
tion constants of the surface waves and the waveguide
modes, are still valid if p and ¢ are replaced everywhere by
p(1—ise) and q(1—1is;). Thus, the horizontal wavenumber
for the surface wave, in the case of negligible interaction, is
given by

A =kl 4+ p2(1 — d55)2]V2

= k(1 + p?)*? — tkp®o(l 4 pH)~H2 (37

Therefore, the attenuation rate is kp25o(1-+p?)~1/2 nepers per
unit length.

For the waveguide modes, it is a simple matter to show
from (27) that the attenuation rate is approximately
(1/d)(pso+g6)[1— (wm/kd)2]~12 for a mode of order . This
result, of course, is only valid if p and g are also small, and
it is required that the modes are not near cutoff.

The ratio R of the attenuation rate of a surface wave
mode and a waveguide mode is an interesting parameter.
Using the immediately foregoing results, it follows that

kdp25()

m \2U2
==
p60+q5d|: (kd):l

which indicates that a lossy upper boundary (i.e., §,>0) will
attenuate the waveguide modes but will have a negligible
effect on the attenuation of the surface wave on the lower
boundary.

Equation (38) above is valid only if both p and ¢ are small.
The other interesting case is to take p and g to be sufficiently
large that, for the waveguide modes, | | <p and ¢. Under
this condition, (21) may be approximated by

R

IR

(38)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JULY 1967

b

. 1 1 0 84 .
Cn l}kd +—4 =4+ —+ —:l = iwim (39)
p 14 a

g
which gives an explicit formula for calculating C,. The
corresponding attenuation rate for a waveguide mode
of order m is readily found to be given approximately by
k(wm/kd)¥s,/p~+04/q). For this case, the ratio of the surface
wave to the waveguide mode attenuation rate is found to be

R (ﬁd_y P’
m (1 + p2)ire <1 + R _6i>
q 0o

(40)

where m=1, 2,3, - - -.

This ratio R can be made small by choosing the upper
boundary to be relatively lossy (i.e., 6:256,). However, one
should be cautious in drawing too many conclusions from
(40) because of the approximations used. For example, it is
required that kpd>2 or 3 in order to neglect the surface
wave interaction with the upper boundary and the corre-
sponding waveguide modes must be sufficiently near graz-
ing that both p and ¢>>(rm/kd).

CONCLUSION

It is believed that some of the results given here have a
bearing on the operation of devices which require that a sur-
face wave be contained in an enclosed conductor. While the
idea of shielding the surface from the external environment
is interesting, considerable care should be taken to avoid the
contaminating influences of the waveguide modes which will
accompany the desired surface wave modes. In spite of this
fundamental drawback, the subject warrants further atten-
tion.
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